Keratocyte Fragments and Cells Utilize Competing Pathways to Move in Opposite Directions in an Electric Field

نویسندگان

  • Yaohui Sun
  • Hao Do
  • Jing Gao
  • Ren Zhao
  • Min Zhao
  • Alex Mogilner
چکیده

Sensing of an electric field (EF) by cells-galvanotaxis-is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7, 8]. Keratocyte fragments [9, 10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a "compass" model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

Response of A Saline Solution Containing A Macromolecule To An External Electric Field

The dynamical behavior of a model for body fluids in response to an external electric field is computationally investigated for communication frequencies. The effect of an applied potential difference between two electrodes in a saline solution containing a rodlike macromolecule is studied by solving the Poisson and ion continuity equations simultaneously using the finite element method (FEM). ...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells

Objective(s):Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be di...

متن کامل

Electric fields accelerate cell polarization and bypass myosin action in motility initiation.

Stationary symmetrical fish keratocyte cells break symmetry and become motile spontaneously but slowly. We found that applying electric field (EF) accelerates the polarization by an order of magnitude. While spontaneously polarized cells move persistently for hours, the EF-induced polarity is lost in a majority of cells when the EF is switched off. However, if the EF is applied for a long time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013